US009360956B2

a2 United States Patent

(10) Patent No.: US 9,360,956 B2

Goins et al. (45) Date of Patent: Jun. 7, 2016
(54) WET INK TEXTURE ENGINE FOR REDUCED (56) References Cited
LAG DIGITAL INKING
U.S. PATENT DOCUMENTS
(71) Applicant: Microsoft Technology Licensing, LL.C, 7450261 B2 11/2008 Dodge et al.
Redmond, WA (US) 7,499,058 B2 3/2009 Van Ness et al.
2005/0088420 Al 4/2005 Dodge et al.
(72) Inventors: Robert Goins, Jersey City, NJ (US); 2011/0310118 A1 122011 Asmi et al.
Sergey Ten, Redmond, WA (US);
Edward Augustus Layne, Jr., Seattle, FOREIGN PATENT DOCUMENTS
WA (US); Mario Baumann, Kirkland, EP 1386984 A2 11/2011
WA (US) WO 97/22947 Al 6/1997
(73) Assignee: Microsoft Technology Licensing, LL.C, OTHER PUBLICATIONS
Redmond, WA (US) “International Search Report and Written Opinion Issued in PCT
. Application No. PCT/US2014/061659”, Mailed Date: Jan. 26, 2015,
(*) Notice: Subject to any disclaimer, the term of this 9 Pages.
patent is extended or adjusted under 35 “The Ink Threading Model”, Published on: Oct. 4, 2011, Available at:
U.S.C. 154(b) by 77 days. http://msdn.microsoft.com/en-us/library/ms788744.aspx, 4 pgs.
“Custom Rendering Ink”, Published on: Mar. 25, 2009, Available at:
. http://msdn.microsoft.com/en-us/library/ms747347 .aspx, 6 pgs.
(21) Appl. No.: 14/065,139 “Accessing and Manipulating Stylus Input”, Published on: Oct. 10,
. 2011, Available at: http://msdn.microsoft.com/en-us/library/win-
(22) Filed: Oct. 28,2013 dows/desktop/ms704172(v=vs.85).aspx, 1 pg.
65) Prior Publication Dat (Continued)
rior Publication Data
US 2015/0116226 Al Apr. 30, 2015 Primary Examiner — Dwayne Bost
Assistant Examiner — Sepehr Azari
(51) Int.CL (74) Attorney, Agent, or Firm — Tom Wong; Julie Kane
GO6F 3/041 (2006.01) Akhter; Micky Minhas
GO6T 1/60 (2006.01)
G09G 5/395 (2006.01) (57 ABSTRACT
GO6K 9/00 (2006.01) A wet ink texture engine and associated method. The wet ink
GO6K 9/22 (2006.01) texture engine may run in the context of any application on
(52) U.S.CL any device, service, or general endpoint capable of receiving
CPC ... GOGF 3/0412 (2013.01); GO6K 9/00402 1tk input. For example, the wet ink texture engine may be
. . used in the context of a note application that receives input in
(2013.01); GO6K 9/222 (2013.01); GO6T 1/60 the (}orntlhof WrtitiIIg gr dretwirliglg)1 Thte ng irtlk texture eﬁgﬁne
(2013.01); GO9G 5/32‘2220(/)]123]0 12)(’) 1G30(?1G reduces, minimizes, or eliminates lag between receiving the
(58) Field of Classification S b (01) input and displaying the input to improve inking experience
ield of Classification Searc for the user.

CPC ..o GOGF 3/038; GOGF 3/04883
See application file for complete search history.

20 Claims, 8 Drawing Sheets

» Inkin Style What's new?

Treicy.AT14.200 €7 AM

j[nycr CmeT

7N
2/

US 9,360,956 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Basic Recognition and Ink Analysis”, Published on: Apr. 19, 2012,
Available at:http://msdn.microsoft.com/en-us/library/windows/
desktop/ms701686(v=vs.85).aspx, 6 pgs.

“Architecture of the StylusInput APIs”, Retrieved on: Aug. 27, 2013,
Available at: http://msdn.microsoft.com/en-IN/library/ms818251.
aspx, 3 pgs.

IPRP dated Feb. 3,2016 in Application No. PCT/US2014/061659, 11
Pages.

International Written Opinion Issued in PCT Application No. PCT/
US2014/061659, Mailed Date: Sep. 4, 2015, 4 Pages.

U.S. Patent Jun. 7, 2016 Sheet 1 of 8 US 9,360,956 B2

Stylus to Screen

Wet Ink Texture

1 :
1 [}
! i
1 .. | R
' Ink Input Orlglnal.lnk i Ink Analysis Final Ir.1k
: Rendering | | Rendering
!]
e e e e e e e e H
5
[oX
£
v
£
lizl Wet Ink Texture Application Canvas
Input Transfer <3 Semi-dry Ink Request
(Wet Ink) (Semi-Dry Ink) Virtual Texture

Panel Panel
(2 Wet ink) (4) Semi-dry Ink

N
o
o2}
N
[o%e]
N
o
=

N
o
N
(am}
N

U.S. Patent Jun. 7, 2016 Sheet 2 of 8 US 9,360,956 B2

Computing Device
2]
' Software/Data !
; i
! 1
]]
i Wet Ink !
]
i Texture | | Application i
' Engine :
1 312 1
i 300 :
] 1
' I b
]]
]]
: :
! Wet Ink Texture Application Canvas '
’ :
: :
' Input Transfer Virtual !
i Panel —> Panel Texture E
: 206 208 204 :
]
] 1
i 200 202 i
i A i
i i
i ’;‘ i
] 1
! 1
] 1
i System !
! Compositor E
: 314 :
1
1 1
] 1
1 1
] 1
L o 1
A A
A Y A Y !
]
! i
: Y =
i Input Output !
! Device Device i
i 308 310 :
I i
]
! Y Y i
]
! Processor < > Memory i
: 304 306| !
= :
! 1
H 1
! Hardware i
302

U.S. Patent Jun. 7, 2016 Sheet 3 of 8 US 9,360,956 B2

Ink Input Thread Ink Render Thread Application Thread
Ink Data > Render
Start Strokes
Ink Data »{ Ink Strokes
End Received
!
|
|
]
1
A 4
Clear < Delete
Strokes Points
400 402 404

Fig. 4

U.S. Patent

Receive ink input

—

Render wet ink stroke
on input panel

52

Is
transfer panel

Jun. 7,2016

Yes

Sheet 4 of 8

locked
?

532

Display wet ink

texture <

53

P e T e T

Is
semi-dry ink

v

Remove stroke
from input panel

+ 53

Yes

Render stroke
on transfer panel

236

present
?

542

Unlock transfer panel

230

Lock transfer panel

Render semi-dry ink
on application canvas

246

!

Clear transfer panel

248

500

Transfer wet ink to transfer panel

Commit semi-dry ink to application

US 9,360,956 B2

U.S. Patent Jun. 7, 2016 Sheet 5 of 8 US 9,360,956 B2

» Inkin Style What's new?
Thursdzy, April 4,213 9:57 AM , \
) pae ()

§ ngr paring

\\
'
» Inkin Style
() Paee

U.S. Patent Jun. 7, 2016 Sheet 6 of 8 US 9,360,956 B2

Computing Device
i i
E System Memory i
[} [}
I |
1 . 1
i Operating System i
|
: 705 i
i i Removable
: Program Modules i Storage
: |
i Applications i 09
| |
] [}
i i Non-Removable
: ! Storage
i i
: H 710
i i
N [}
: i
: i Input Device(s)
i Wet Ink Processing Unit i 712
i Texture i —
d Engine i
1]
i 300 i Output Device(s)
: [}
: | 714
: o2
: 1
i i Communication
1 H .
: : Connections
e e 116
: 1
! 72 !
i — i
i 706 i
i 104 5
e 08
700
Other Computing
Devices
718

Fig. 7

U.S. Patent Jun. 7, 2016 Sheet 7 of 8 US 9,360,956 B2

830 -
5\ O/(| §
20 \[=
815
805 ,\\-
PN

) 1
OOoooooodo, o
o o o o e
o o

Mobile Computing Device

Fig. 8A

U.S. Patent Jun. 7, 2016 Sheet 8 of 8 US 9,360,956 B2

802

Y 862

860 Processor
. . ——\ }— 866
803 \{ Display {

I
HL—
T

e
y

830 Peripheral Device
Port] L — 868
835 Keypad — \—
)
i — Power |_— 870
Supply
J, J: Jr [v]
Video Audio Radio Interface LED
Interface Interface Layer
_J _J
876 874 879 I/ 820
% J

Fig. 8B

US 9,360,956 B2

1

WET INK TEXTURE ENGINE FOR REDUCED
LAG DIGITAL INKING

BACKGROUND

Computers, tablets, smart phones, and other computing
devices adopting natural user interfaces (NUIs) allowing
users to input information as handwriting or drawings by
writing directly on the screen or a digitizer are increasingly
common. The process of receiving and rendering written or
drawn information from a stylus is referred to as inking. The
stylus may be a digital pen, mouse, finger or other suitable
device that can be used to write or draw on the screen or
digitizer. During inking, each move sequence of the stylus is
recorded as a stroke storing the coordinates of and properties
associated with the input. For example, a stroke may include
the movements from the time when the pen tip is moved
closed enough to be detected by the digitizer, the mouse
button is depressed, or the finger touches the screen until the
time that pin tip is moved away from the digitizer and no
longer detectable, the mouse button is released, or the finger
is no longer touching the screen. One or more strokes make up
the ink (i.e., digital ink) used with applications running on the
computing device.

On screen, the ink may appear as natural-looking handwrit-
ing or hand drawn pictures. In the case of handwriting, the ink
may be converted to standard text through handwriting rec-
ognition. The converted text may be associated with the cor-
responding natural-looking handwriting as an alternate data
format useful when working with (e.g., searching) inked
information or may replace the natural-looking handwriting
on screen and in the application (e.g., creating a typed docu-
ment).

At times, the ink drawn on the screen severely lags behind
the stylus. This lag is a result of the application attempting to
do three actions simultaneously: process the ink input, render
the ink to the screen, and save the ink to the application canvas
(i.e., what the application displays to the user). Attempting to
accomplish all of these tasks simultancously slows each of
them down because the user interface pipeline backs up
quickly.

Lag is especially problematic for single-threaded applica-
tions, but remains a concern even for multi-threaded applica-
tions. In a multi-threaded application, lag may be addressed
by creating additional threads and handling each action in a
separate thread; however, this solution is not available for
single-threaded applications and may not be viable or suitable
for all multi-threaded applications.

When saving ink to the application canvas, lag may occur
as a result of hardware timing constraints. For example,
updates to the application canvas may be tied to the screen
refresh frequency while input devices, such as the stylus,
operate at the system bus speed. In a typical example, screens
are refreshed on a 60 Hz cycle while the system bus operates
at 133 Hz. Limited to one update of the application canvas per
screen refresh (i.e., frame), the stylus generates ink more than
twice as fast as it can be displayed by the application. As the
user continues to write or draw, the ink lags further and further
behind the stylus and is displayed to the user in choppy bursts
rather than smoothly appearing with the movements of the
stylus.

Different combinations of hardware and software have
been found to produce significant lag where the ink does not
appear for six or seven frames, which translates to the ink
trailing the stylus by one to two inches. At a minimum, lag
detracts from the pen and paper experience that inking is
designed to provide. More than just being noticeable, lag

10

15

20

25

30

35

40

45

50

55

60

65

2

creates efficiency and usability problems when the user has to
stop and wait for the ink to catch up with the stylus so the user
can see or make changes to what has been written or drawn. It
is with respect to these and other considerations that the
present invention has been made. Although relatively specific
problems have been discussed, it should be understood that
the embodiments disclosed herein should not be limited to
solving the specific problems identified in the background.

BRIEF SUMMARY

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description section. This summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

Embodiments described in the present disclosure provide
for a wet ink texture engine that may run in the context of any
application on any device, service, or general endpoint
capable of receiving ink input. Ink input begins when the user
starts writing or drawing with ink. Original ink rendering
happens continuously and frequently while the user is
actively producing ink strokes. Original ink is viewable but
has not yet been transferred to the application for which the
ink input is intended. The process of rendering of the original
ink is referred to as wet inking. Wet inking reduces user
perceptible lag between the time when the user moves the
stylus and the time ink appears on the screen. Ink input stops
when there is break in the active production of ink strokes.
When this happens, original ink strokes are passed to an ink
analysis component to produce final ink. The process of
replacing of original ink with final ink is referred to as dry
inking.

During wet inking, the original ink is cached in the wet ink
texture. The wet ink texture is composed of wet ink and
semi-dry ink. The application canvas stores the virtual texture
holding the ink captured by and available in, to, and from the
application (i.e., dry ink). Wet ink is stored in the input layer,
and the semi-dry ink is stored in the transfer layer. Each layer
is a virtual frame buffer used to hold the original ink at
different stages in the wet inking process. The original ink
input is rendered in the input layer. The image stored in the
input layer is an unprocessed representation of the most
recent ink data received, including partial strokes. Frequently
presenting the input layer for display minimizes user percep-
tible lag between the time when the user moves the stylus and
the time ink appears on the screen.

After being rendered, wet ink is moved to the transfer layer.
The transfer layer serves as an intermediate frame buffer for
wet ink that is ready is to be committed to or consumed by the
application (i.e., semi-dry ink). The transfer involves remov-
ing at least some of the rendered wet ink from the input layer
and re-rendering it in the transfer layer as semi-dry ink. The
image stored in the transfer layer is an unprocessed represen-
tation of wet ink that has been rendered and is ready to be
moved (i.e., committed) to the application canvas.

During dry inking, at least a portion of the ink in the wet ink
texture is moved to the virtual texture of the application
canvas. When the application is ready to accept any available
semi-dry ink, the application requests the contents of the
transfer layer. The semi-dry ink is re-rendered in the virtual
texture of the application canvas and the transfer layer is
cleared. The flow continues until all ink is transferred from
the wet ink texture to the virtual texture.

In various embodiments, the wet ink texture engine pro-
vides at least one dedicated worker thread to receive and

US 9,360,956 B2

3

render ink input. Regardless of number, these worker threads
are independent from the user interface (UI) thread that
becomes sluggish as activity increases. Ink input happens on
a dedicated ink input thread and is marshaled to a dedicated
ink render thread. Rendering of the raw (i.e., wet) ink in the
input layer happens on the ink render thread without any
further processing of the wet ink at this time. Receiving input
and rendering wet ink occurs with high priority. Once ren-
dered, the wet ink is presented to the system compositor and
displayed to the user at the next screen update. In other words,
the wet ink appears on screen with minimal user perceivable
lag between the time that the input is received and the time
that it is displayed.

Transfer of the rendered wet strokes to the transfer layer
happens on the ink render thread. The transfer may occur at
lower priority than receiving input and rendering wet ink to
allow the wet ink to be displayed as rapidly as possible.
Following a transfer, the wet ink and the semi-dry ink are
presented to the system compositor at the same or substan-
tially the same time and displayed to the user at the next
screen update. Transferring the semi-dry ink to the applica-
tion as dry ink involves locking the transfer layer, re-render-
ing the semi-dry ink on the application canvas, and clearing
the transfer layer. Once the transfer layer is locked, the semi-
dry ink is marshaled to the application thread, which renders
it on the application canvas as dry ink. After the dry ink has
been rendered, the transfer layer is cleared and unlocked by
the ink render thread.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features, aspects, and advantages of the present
disclosure will become better understood by reference to the
following figures, wherein elements are not to scale so as to
more clearly show the details and wherein like reference
numbers indicate like elements throughout the several views.

FIG. 1 illustrates the general flow of ink from input to
screen for an application utilizing the wet ink texture engine.

FIG. 2 illustrates one embodiment of the flow of ink
between the wet ink texture produced during wet inking and
the virtual texture produced during dry inking.

FIG. 3 illustrates one embodiment of the wet ink texture
engine in a basic computing system environment.

FIG. 4 illustrates the relationship between the threads asso-
ciated with a single-threaded application utilizing one
embodiment of the wet ink texture engine.

FIG. 5 illustrates one embodiment of the wet inking
method performed by the wet ink texture engine.

FIG. 6A illustrates ink entered on a touch screen using a
finger, without user perceptible lag, in an application utilizing
one embodiment of the wet ink texture engine.

FIG. 6B illustrates ink entered on a digitizer using a digital
pen, without user perceptible lag, in an application utilizing
one embodiment of the wet ink texture engine.

FIG. 7 is a block diagram illustrating one embodiment of
the physical components of a computing device with which
embodiments of the invention may be practiced.

FIGS. 8 A and 8B are simplified block diagrams of amobile
computing device with which embodiments of the present
invention may be practiced.

DETAILED DESCRIPTION

Various embodiments of a wet ink texture engine are
described herein and illustrated in the accompanying figures.
The wet ink texture engine may run in the context of any
application on any device, service, or general endpoint

40

45

60

4

capable of receiving ink input. For example, the wet ink
texture engine may be used in the context of a note application
that receives input in the form of writing or drawing. The wet
ink texture engine reduces, minimizes, or eliminates lag
between receiving the input and displaying the input to
improve inking experience for the user.

FIG. 1 illustrates the general flow of ink from input to
screen for an application utilizing the wet ink texture engine.
Ink input begins when the user starts writing or drawing with
ink. Examples of events signifying the start of ink input
include, but are not limited to, a digital pen moving into range
of' the digitizer, pressing a mouse button, making finger con-
tact with a touch screen, and activating an ink input mode in
which hand movements detected by an object-tracking elec-
tronic sensor to be interpreted as writing or drawing. Original
ink rendering happens continuously and as frequently as pos-
sible while the user is actively producing ink strokes. Original
ink is viewable but has not yet been transferred to the appli-
cation for which the ink input is intended. The process of
rendering of the original ink is referred to as wet inking. Wet
inking reduces user perceptible lag between the time when
the user moves the stylus and the time ink appears on the
screen.

Ink input stops when there is break in the active production
of ink strokes. Examples of events signifying the end of ink
input include, but are not limited to, a digital pen moving out
of range of the digitizer, releasing the mouse button, ceasing
finger contact with the touch screen, and deactivating the ink
input mode. When this happens, original ink strokes are
passed to an ink analysis component to produce final ink. The
process of replacing of original ink with final ink is referred to
as dry inking. At a minimum, the ink analysis component
commits the ink to application; however, the ink analysis
component may perform additional optional processing of
the ink. Dry inking triggers re-rendering of original ink
because dry inking involves deleting original ink strokes
when rendered as final ink.

FIG. 2 illustrates one embodiment of the flow of ink
between the wet ink texture produced during wet inking and
the virtual texture produced during dry inking. During wet
inking, the original ink is cached in the wet ink texture 200.
The wet ink texture 200 is composed of wet ink and semi-dry
ink. The wet ink is texture 200 frequently updated and dis-
played to the user; however, the wet ink in the wet ink texture
200 is not usable by the application until dry inking occurs.
The application canvas 202 stores the virtual texture 204
holding the ink captured by and available in, to, and from the
application (i.e., dry ink).

The wet ink and the semi-dry ink are stored in separate
layers. Wet ink is stored in the input (i.e., wet ink) layer 206,
and the semi-dry ink is stored in the transfer (i.e., semi-dry
ink) layer 208. Each layer is a virtual frame buffer used to hold
the original ink at different stages in the wet inking process.
The layers and the application canvas 202 may be imple-
mented as objects (e.g., bitmaps, rasterized images, or swap
chains) accessible through an application programming inter-
face (API) handling tasks related to displaying graphics (e.g.,
DirectX), controls (e.g., swap chain layers) in a visual pre-
sentation markup language, such as the Extensible Applica-
tion Markup Language (XAML), or managed rendering sur-
faces using a visual presentation markup language to manage
the interactions between the graphics display API and the
image source. In various embodiments, the application can-
vas 202 is a managed rendering surface, such as a Virtual
Surface Image Source (VSIS) or a Surface Image Source
(SIS), and the input layer 206 and transfer (i.e., semi-dry ink)
layers are swap chain layers.

US 9,360,956 B2

5

The original ink input is rendered in the input (i.e., wet ink)
layer. The image stored in the input layer 206 is an unproc-
essed (i.e., raw) representation of the most recent ink data
received, including partial strokes. Frequently presenting the
input layer 206 for display minimizes user perceptible lag
between the time when the user moves the stylus and the time
ink appears on the screen.

After being rendered, wet ink is moved to the transfer (i.e.,
semi-dry ink) layer. The transfer layer 208 serves as an inter-
mediate frame buffer for wet ink that is ready is to be com-
mitted or consumed to the application (i.e., semi-dry ink). The
transfer involves removing at least some of the rendered wet
ink from the input layer 206 and re-rendering it in the transfer
layer 208 as semi-dry ink. The image stored in the transfer
layer 208 is an unprocessed representation of wet ink that has
been rendered and is ready to be moved (i.e., committed) to
the application canvas.

During dry inking, at least a portion of the wet ink is moved
to the virtual texture 204 of the application canvas. When the
application is ready to accept any available semi-dry ink, the
application requests the contents of the transfer layer. The
semi-dry ink is re-rendered in the virtual texture 204 of the
application canvas 202 and the transfer layer 208 is cleared.
The flow continues until all ink is transferred from the wet ink
texture 200 to the virtual texture.

FIG. 3 illustrates one embodiment of the wet ink texture
engine in a basic computing system environment. The wet ink
texture engine 300 runs on a computing device 302. The
computing device generally includes hardware components
including a processor 304, a memory 306, an input device
308, and an output device 310. The processor 304 executes
the software components including, but not limited to, the wet
ink texture engine 300, the application 312, and the system
compositor 314, and performs other logical and control func-
tions. The memory 306 stores the software components and
associated data including, but not limited to, the wet ink
texture 200, the virtual texture 204, the input layer 206, and
the transfer layer 208. Examples of suitable computing
devices usable with the wet ink texture engine 300 include,
but not limited to, desktop computers, laptop computers, tab-
let computers, surface computers, and smart phones.

The input device 308 is a coordinate-based input device. In
various embodiments of the input device, a stylus is used for
inking (i.e., writing or drawing on) a surface. In some
embodiments, the stylus is an active component (e.g., a digital
pen or mouse) that produces a coordinate-based input as it
moves. An active stylus may be used with a passive surface
(e.g., a piece of paper, mouse pad, or desktop). In other
embodiments, the surface is the active component (e.g., a
digitizer or touch screen) that produces a coordinate-based
input based on the position and movement ofthe user’s finger,
adigital pen, or other stylus (either active or passive). In some
embodiments, the input device 308 is an electronic sensor that
produces a coordinate-based input based on movement of a
user’s body (e.g., a finger, hand, or arm) or other object
relative to a screen image displayed or projected on a large
surface (e.g., a wall, table, or digital whiteboard). In various
embodiments, the electronic sensor operates based on infra-
red, ultrasonic, thermal, laser, or other vision- or sonic-based
sensing technology suitable for tracking an object. One
example of a suitable electronic sensor is a Microsoft®
Kinect® sensor. It should be appreciated that the input device
308 may also be used for inputs other than inking.

The output device 310 is a visual display device for pre-
senting information, including the application user interface
and ink to the user. Examples of suitable output devices
include, but are not limited to, display screens, monitors,

10

15

20

25

30

35

40

45

50

55

60

65

6

projectors, and digital white boards. As previously men-
tioned, the layers and the application canvas 202 are com-
bined to produce the final image displayable on the output
device 310. For example, the wet ink texture engine 300 may
present each of the layers to a system compositor 314 running
on the computing device while the application may present
the application canvas 202 to the system compositor 314. The
system compositor 314 receives image sources from the
applications running on the computing devices and composes
the final image that is displayed on the screen.

The wet ink texture engine 300 operates in conjunction
with an application capable of receiving ink through the coor-
dinate-based input device. For example, the wet ink texture
engine 300 may operate in conjunction with an application
312 (e.g., a note application, drawing application, or an oper-
ating system) running on the computing device. In various
embodiments, the wet ink texture engine 300 is an integrated
component of the application. In other embodiments, the wet
ink texture engine 300 and the application are separate but
interactive components. For example, the wet ink texture
engine 300 may be a service, add-in, interface, applet, or other
software component callable by or otherwise working with
the application to process ink inputs.

FIG. 4 illustrates the relationship between the threads asso-
ciated with a single-threaded application utilizing one
embodiment of the wet ink texture engine. The wet ink texture
engine 300 may be used with both single- and multi-threaded
applications; however, greater benefit may be experienced
with single-threaded applications and multi-threaded appli-
cations having a single thread for receiving, rendering, and
processing inputs. In various embodiments, the wet ink tex-
ture engine 300 provides two dedicated worker threads to
receive and render ink input. In other embodiments, the wet
ink texture engine 300 provides a single dedicated worker
thread to receive and render ink input. Regardless of number,
these worker threads are independent from the single appli-
cation or user interface (UI) thread that becomes sluggish as
activity increases.

Ink input happens on a dedicated ink input thread 400 and
is marshaled to a dedicated ink render thread 402. Rendering
of'the raw (i.e., wet) ink in the input layer 206 happens on the
ink render thread 402 without any further processing of the
wet ink at this time. Receiving input and rendering wet ink
occurs with high priority. Once rendered, the wet ink is pre-
sented to the system compositor and displayed to the user at
the next screen update. In other words, the wet ink appears on
screen with minimal user perceivable lag between the time
that the input is received and the time that it is displayed.

Transfer of the rendered wet strokes to the transfer layer
208 happens on the ink render thread 402. The transfer may
occur at lower priority than receiving input and rendering wet
ink to allow the wet ink to be displayed as rapidly as possible.
In some embodiments, the semi-dry ink conversion occurs
substantially contemporaneously with rendering the wet ink.
In other embodiments, the semi-dry ink conversion occurs at
a break in ink input. In such cases, the transfer layer 208 will
only contain complete strokes, which may be useful to facili-
tate optional processing when the semi-dry ink strokes are
committed to the application.

Following a transfer, the wet ink and the semi-dry ink are
presented to the system compositor 314 at the same or sub-
stantially the same time and displayed to the user at the next
screen update. Waiting to present the input layer 206 with the
transfer layer 208 once the semi-dry ink has been rendered,
instead of presenting the input layer 206 immediately after
the wet ink has been removed, works to maintain the visual
fidelity of the ink display. For example, synchronizing the

US 9,360,956 B2

7

presentation of the input and transfer layers minimizes user
perceived flicker that might result from the displaying the
input and transfer layers after the wet ink has been removed
and before it has been re-rendered as semi-dry ink.

Transferring the semi-dry ink to the application as dry (i.e.,
committed) ink involves locking the transfer layer 208, re-
rendering the semi-dry ink on the application canvas 202, and
clearing the transfer layer 208. Once the transfer layer 208 is
locked, the semi-dry ink is marshaled to the application on the
application thread 404, which renders it on the application
canvas as dry ink. In various embodiments, the application
thread 404 is the Ul thread. In other embodiments, the appli-
cation thread 404 is a dedicated worker thread for rendering
ink to the application canvas 202. After the dry ink has been
rendered, the transfer layer 208 is cleared and unlocked by the
ink render thread 402. In various embodiments, the applica-
tion thread 404 sends a request for the ink render thread 402
to delete the contents of the transfer layer 208 after rendering
the dry ink.

As discussed above, the application may periodically poll
the wet ink texture engine 300 to determine if semi-dry ink is
available. In some embodiments, the wet ink texture engine
300 may provide notification to the application at a break in
ink input and/or at the end semi-dry ink conversion. Commit-
ting semi-dry ink to the application may occur at lower pri-
ority than receiving and rendering wet ink and/or converting
wet ink to semi-dry ink. In some embodiments, committing
semi-dry ink may only occur when sufficient resources are
available to minimize the likelihood of causing user percep-
tible ink lag. For example, committing semi-dry ink may only
occur when processor utilization is below a threshold level.

In various embodiments, the application thread 404 per-
forms optional processing before or after rendering the dry
ink. In some embodiments, the semi-dry ink strokes are
smoothed before being rendered to the application canvas. In
some embodiments, the semi-dry ink strokes are subjected to
character recognition processing to identify ink correspond-
ing to writing. The results of character recognition may be
used to enhance the appearance of handwritten text (e.g., to
improve legibility or aesthetic quality) or to create an object
containing standard characters (e.g., ASCII, Unicode, or
other computer readable text) corresponding to the handwrit-
ten text to facilitate use (e.g., indexing or full text searching)
of'the information represented by the ink by the application or
other software accessing the application data. Such additional
processing is generally, but not necessarily, provided sepa-
rately and independently from the wet ink texture engine.

FIG. 5 illustrates one embodiment of the wet inking
method facilitated by the wet ink texture engine. The wet
inking method 500 begins with the user writing or drawing an
ink input. As the user writes or draws, the wet ink input
operation 510 captures the ink. The wet ink rendering opera-
tion 520 renders the ink in the input layer 206 and presents the
input layer 206 for display as the system continues to receive
ink input. After the wet ink is rendered, a semi-dry transfer
operation 530 moves each stroke to the transfer layer. Moving
the stroke from the input layer 206 to the transfer layer 208
involves multiple operations. First, a lock check operation
532 determines whether the transfer layer 208 is locked. If
locked, strokes cannot be moved to the transfer layer 208. If
the transfer layer 208 is not locked, a wet stroke removal
operation 534 deletes the stroke being moved from the input
layer. Finally, the semi-dry rendering operation 536 renders
the stroke being moved in the transfer layer 208. Once the
stroke has been moved, the synchronized presentation opera-
tion 538 presents both the input and transfer layers for dis-
play. By contemporaneously presenting both the input layer

25

35

40

45

55

8

206 and the transfer layer 208 for display, the transfer of the
stroke is virtually unnoticeable to user.

Semi-dry ink rendered in the transfer layer 208 is available
to be committed to the application canvas 202 in the semi-dry
ink commit operation 540. In various embodiments, the semi-
dry ink commit operation 540 begins with a semi-dry ink
availability operation 542 that confirms the availability of
semi-dry ink in response a request from the application
thread. If semi-dry ink is available, the transfer layer lock
operation 544 locks the transfer layer 208. Locking the trans-
fer layer 208 prevents freshly-rendered wet ink from being
converted to semi-dry ink. While the transfer layer 208 is
locked, wet ink continues to accumulate in the input layer 206
and be displayed to the user. Once the transfer layer 208 is
locked, the dry ink render operation 546 re-renders the semi-
dry ink in the transfer layer on the application canvas. Once
the dry ink has been rendered, the transfer layer clear opera-
tion 548 deletes the semi-dry ink in the transfer layer 208.
After the transfer layer 208 is cleared, the transfer layer
unlock operation 550 unlocks the transfer layer 208.

Locking the transfer layer 208 keeps the semi-dry ink
committed to the application separate from wet ink received
during the commit operation. By locking the transfer layer
208, only the semi-dry ink that is actually committed to the
application is cleared. Without the lock, wet ink converted to
semi-dry ink after the application thread 404 collects the
available semi-dry ink and before the transfer layer 208
would be cleared and lost.

The subject matter of this application may be practiced in
a variety of embodiments as systems, devices, and other
articles of manufacture or as methods. Embodiments may be
implemented as hardware, software, computer readable
media, or a combination thereof. The embodiments and func-
tionalities described herein may operate via a multitude of
computing systems including, without limitation, desktop
computer systems, wired and wireless computing systems,
mobile computing systems (e.g., mobile telephones, net-
books, tablet or slate type computers, notebook computers,
and laptop computers), hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, and mainframe computers.
FIGS. 6A and 6B, respectively, show ink being entered, with-
out user perceptible lag, in an application utilizing one
embodiment of the wet ink texture engine 300 using a finger
with a touch screen-based computing device and using a
digital pen with a computing device having a digitizer.

User interfaces and information of various types may be
displayed via on-board computing device displays or via
remote display units associated with one or more computing
devices. For example, user interfaces and information of vari-
ous types may be displayed and interacted with on a wall
surface onto which user interfaces and information of various
types are projected. Interaction with the multitude of comput-
ing systems with which embodiments of the invention may be
practiced include, keystroke entry, touch screen entry, voice
or other audio entry, gesture entry where an associated com-
puting device is equipped with detection (e.g., camera) func-
tionality for capturing and interpreting user gestures for con-
trolling the functionality of the computing device, and the
like.

FIGS. 7 and 8 and the associated descriptions provide a
discussion of a variety of operating environments in which
embodiments of the invention may be practiced. However, the
devices and systems illustrated and discussed are for purposes
of example and illustration and are not limiting of a vast

US 9,360,956 B2

9

number of computing device configurations that may be uti-
lized for practicing embodiments of the invention described
above.

FIG. 7 is a block diagram illustrating physical components
(i.e., hardware) of a computing device 700 with which
embodiments of the invention may be practiced. The comput-
ing device components described below may be suitable for
embodying computing devices including, but not limited to, a
personal computer, a tablet computer, a surface computer, and
a smart phone, or any other computing device discussed
herein. In a basic configuration, the computing device 700
may include at least one processing unit 702 and a system
memory 704. Depending on the configuration and type of
computing device, the system memory 704 may comprise,
but is not limited to, volatile storage (e.g., random access
memory), non-volatile storage (e.g., read-only memory),
flash memory, or any combination of such memories. The
system memory 704 may include an operating system 705
and one or more program modules 706 suitable for running
software applications 720 such as the wet ink texture engine
300. For example, the operating system 705 may be suitable
for controlling the operation of the computing device 700.
Furthermore, embodiments of the invention may be practiced
in conjunction with a graphics library, other operating sys-
tems, or any other application program and is not limited to
any particular application or system. This basic configuration
is illustrated by those components within a dashed line 708.
The computing device 700 may have additional features or
functionality. For example, the computing device 700 may
also include additional data storage devices (removable and/
or non-removable) such as, for example, magnetic disks,
optical disks, or tape. Such additional storage is illustrated by
aremovable storage device 709 and a non-removable storage
device 710.

As stated above, a number of program modules and data
files may be stored in the system memory 704. While execut-
ing on the processing unit 702, the software applications 720
may perform processes including, but not limited to, one or
more of the stages of the wet inking method 500. Other
program modules that may be used in accordance with
embodiments of the present invention may include electronic
mail and contacts applications, word processing applications,
spreadsheet applications, database applications, slide presen-
tation applications, drawing or computer-aided application
programs, etc.

Furthermore, embodiments of the invention may be prac-
ticed in an electrical circuit comprising discrete electronic
elements, packaged or integrated electronic chips containing
logic gates, a circuit utilizing a microprocessor, or on a single
chip containing electronic elements or microprocessors. For
example, embodiments of the invention may be practiced via
a system-on-a-chip (SOC) where each or many of the illus-
trated components may be integrated onto a single integrated
circuit. Such an SOC device may include one or more pro-
cessing units, graphics units, communications units, system
virtualization units and various application functionality all
of which are integrated (or “burned”) onto the chip substrate
as a single integrated circuit. When operating via an SOC, the
functionality described herein with respect to the software
applications 720 may be operated via application-specific
logic integrated with other components of the computing
device 700 on the single integrated circuit (chip). Embodi-
ments of the invention may also be practiced using other
technologies capable of performing logical operations such
as, for example, AND, OR, and NOT, including but not lim-
ited to mechanical, optical, fluidic, and quantum technolo-

10

15

20

25

30

35

40

45

50

55

60

65

10

gies. In addition, embodiments of the invention may be prac-
ticed within a general purpose computer or in any other
circuits or systems.

The computing device 700 may also have one or more input
device(s) 712 such as a keyboard, a mouse, a pen, a sound
input device, a touch input device, etc. The output device(s)
714 such as a display, speakers, a printer, etc. may also be
included. The aforementioned devices are examples and oth-
ers may be used. The computing device 700 may include one
or more communication connections 716 allowing commu-
nications with other computing devices 718. Examples of
suitable communication connections 716 include, but are not
limited to, RF transmitter, receiver, and/or transceiver cir-
cuitry; universal serial bus (USB), parallel, and/or serial
ports.

The term computer readable media as used herein may
include computer storage media. Computer storage media
may include volatile and nonvolatile, removable and non-
removable media implemented in any method or technology
for storage of information, such as computer readable instruc-
tions, data structures, or program modules. The system
memory 704, the removable storage device 709, and the non-
removable storage device 710 are all examples of computer
storage media (i.e., memory storage.) Computer storage
media may include random access memory (RAM), read only
memory (ROM), electrically erasable read-only memory
(EEPROM), flash memory or other memory technology,
compact disc read only memory (CD-ROM), digital versatile
disks (DVD) or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic stor-
age devices, or any other article of manufacture which can be
used to store information and which can be accessed by the
computing device 700. Any such computer storage media
may be part of the computing device 700.

FIGS. 8A and 8B illustrate a mobile computing device 800
with which embodiments of the invention may be practiced.
Examples of suitable mobile computing devices include, but
are not limited to, a mobile telephone, a smart phone, a tablet
computer, a surface computer, and a laptop computer. In a
basic configuration, the mobile computing device 800 is a
handheld computer having both input elements and output
elements. The mobile computing device 800 typically
includes a display 805 and one or more input buttons 810 that
allow the user to enter information into the mobile computing
device 800. The display 805 of the mobile computing device
800 may also function as an input device 308 (e.g., a touch
screen display). If included, an optional side input element
815 allows further user input. The side input element 815 may
be a rotary switch, a button, or any other type of manual input
element. In alternative embodiments, mobile computing
device 800 may incorporate more or less input elements. For
example, the display 805 may not be a touch screen in some
embodiments. In yet another alternative embodiment, the
mobile computing device 800 is a portable phone system,
such as a cellular phone. The mobile computing device 800
may also include an optional keypad 835. Optional keypad
835 may be a physical keypad or a “soft” keypad generated on
the touch screen display. In various embodiments, the output
elements include the display 805 for showing a graphical user
interface, a visual indicator 820 (e.g., a light emitting diode),
and/or an audio transducer 825 (e.g., a speaker). In some
embodiments, the mobile computing device 800 incorporates
avibration transducer for providing the user with tactile feed-
back. In yet another embodiment, the mobile computing
device 800 incorporates input and/or output ports, such as an
audio input (e.g., a microphone jack), an audio output (e.g., a

US 9,360,956 B2

11

headphone jack), and a video output (e.g., a HDMI port) for
sending signals to or receiving signals from an external
device.

FIG. 8B is a block diagram illustrating the architecture of
one embodiment of a mobile computing device. That is, the
mobile computing device 800 can incorporate a system (i.e.,
an architecture) 802 to implement some embodiments. In one
embodiment, the system 802 is implemented as a smart phone
capable of running one or more applications (e.g., browsers,
e-mail clients, notes, contact managers, messaging clients,
games, and media clients/players). In some embodiments, the
system 802 is integrated as a computing device, such as an
integrated personal digital assistant (PDA) and wireless
phone.

One or more application programs 866 may be loaded into
the memory 862 and run on or in association with the oper-
ating system 864. Examples of the application programs
include phone dialer programs, e-mail programs, personal
information management (PIM) programs, word processing
programs, spreadsheet programs, Internet browser programs,
messaging programs, and so forth. The system 802 also
includes a non-volatile storage area 868 within the memory
862. The non-volatile storage area 868 may be used to store
persistent information that should not be lost if the system 802
is powered down. The application programs 866 may use and
store information in the non-volatile storage area 868, such as
e-mail or other messages used by an e-mail application, and
the like. A synchronization application (not shown) also
resides on the system 802 and is programmed to interact with
a corresponding synchronization application resident on a
host computer to keep the information stored in the non-
volatile storage area 868 synchronized with corresponding
information stored at the host computer. As should be appre-
ciated, other applications may be loaded into the memory 862
and run on the mobile computing device 800, including soft-
ware applications 720 described herein.

The system 802 has a power supply 870, which may be
implemented as one or more batteries. The power supply 870
might further include an external power source, such as an AC
adapter or a powered docking cradle that supplements or
recharges the batteries.

The system 802 may also include a radio 872 that performs
the function of transmitting and receiving radio frequency
communications. The radio 872 facilitates wireless connec-
tivity between the system 802 and the outside world via a
communications carrier or service provider. Transmissions to
and from the radio 872 are conducted under control of the
operating system 864. In other words, communications
received by the radio 872 may be disseminated to the appli-
cation programs 866 via the operating system 864, and vice
versa.

The visual indicator 820 may be used to provide visual
notifications, and/or an audio interface 874 may be used for
producing audible notifications via the audio transducer 825.
In the illustrated embodiment, the visual indicator 820 is a
light emitting diode (LED) and the audio transducer 825 is a
speaker. These devices may be directly coupled to the power
supply 870 so that when activated, they remain on for a
duration dictated by the notification mechanism even though
the processor 860 and other components might shut down for
conserving battery power. The LED may be programmed to
remain on indefinitely until the user takes action to indicate
the powered-on status of the device. The audio interface 874
is used to provide audible signals to and receive audible
signals from the user. For example, in addition to being
coupled to the audio transducer 825, the audio interface 874
may also be coupled to a microphone to receive audible input,

5

10

15

20

25

30

35

40

45

50

55

60

12

such as to facilitate a telephone conversation. In accordance
with embodiments of the present invention, the microphone
may also serve as an audio sensor to facilitate control of
notifications, as will be described below. The system 802 may
further include a video interface 876 that enables an operation
of an on-board camera 830 to record still images, video
stream, and the like.
A mobile computing device 800 implementing the system
802 may have additional features or functionality. For
example, the mobile computing device 800 may also include
additional data storage devices (removable and/or non-re-
movable) such as, magnetic disks, optical disks, or tape. Such
additional storage is illustrated by the non-volatile storage
area 868.
Data/information generated or captured by the mobile
computing device 800 and stored via the system 802 may be
stored locally on the mobile computing device 800, as
described above, or the data may be stored on any number of
storage media that may be accessed by the device via theradio
872 or via a wired connection between the mobile computing
device 800 and a separate computing device associated with
the mobile computing device 800, for example, a server com-
puter in a distributed computing network, such as the Internet.
As should be appreciated such data/information may be
accessed via the mobile computing device 800 via the radio
872 or via a distributed computing network. Similarly, such
data/information may be readily transferred between comput-
ing devices for storage and use according to well-known
data/information transfer and storage means, including elec-
tronic mail and collaborative data/information sharing sys-
tems.
The description and illustration of one or more embodi-
ments provided in this application are intended to provide a
complete thorough and complete disclosure the full scope of
the subject matter to those skilled in the art and not intended
to limit or restrict the scope of the invention as claimed in any
way. The embodiments, examples, and details provided in
this application are considered sufficient to convey posses-
sion and enable those skilled in the art to practice the best
mode of claimed invention. Descriptions of structures,
resources, operations, and acts considered well-known to
those skilled in the art may be brief or omitted to avoid
obscuring lesser known or unique aspects of the subject mat-
ter of this application. The claimed invention should not be
construed as being limited to any embodiment, example, or
detail provided in this application unless expressly stated
herein. Regardless of whether shown or described collec-
tively or separately, the various features (both structural and
methodological) are intended to be selectively included or
omitted to produce an embodiment with a particular set of
features. Further, any or all of the functions and acts shown or
described may be performed in any order or concurrently.
Having been provided with the description and illustration of
the present application, one skilled in the art may envision
variations, modifications, and alternate embodiments falling
within the spirit of the broader aspects of the general inventive
concept embodied in this application that do not depart from
the broader scope of the claimed invention.
What is claimed is:
1. A method for reducing lag between receiving and dis-
playing input, the method comprising:
receiving input and rendering the input as wet ink;
buffering the wet ink to generate semi-dry ink by re-ren-
dering one or more portions of the wet ink; and

synchronously displaying the wet ink and the semi-dry ink
within an application canvas of an application executing
on an input device.

US 9,360,956 B2

13

2. The method of claim 1, wherein rendering the input
further comprises processing the received input as wet ink
strokes and storing the wet ink strokes to an input layer buffer.

3. The method of claim 1, wherein the buffering of the wet
ink further comprises transferring the wet ink strokes to a
transfer layer buffer and generating semi-dry ink strokes
based on the re-rendering.

4. The method of claim 3, wherein the re-rendering further
comprises:

removing a first wet ink stroke from the input layer;

rendering remaining wet ink strokes to generate the semi-

dry ink strokes; and

storing the rendered semi-dry ink strokes in the transfer

layer buffer.

5. The method of claim 3, wherein the buffering further
comprises locking the transfer layer buffer, and transmitting
the semi-dry ink strokes to an application for commitment of
the semi-dry ink strokes.

6. The method of claim 5, wherein the buffering further
comprises unlocking the transfer layer buffer in response to
transmitting the semi-dry ink strokes to the application.

7. The method of claim 6, wherein the buffering further
comprises deleting the semi-dry ink strokes from the transfer
layer buffer in response to transmitting the semi-dry ink
strokes to the application.

8. The method of claim 1, further comprising re-rendering
the semi-dry ink for commitment to the application.

9. A system for reducing lag during inking, the system
comprising:

at least one memory; and

at least one processor operatively connected with the

memory and configured to:

receive an input and render the input as wet ink,

buffer the wet ink to generate semi-dry ink by re-render-
ing one or more portions of the wet ink, and

synchronously display the wet ink and the semi-dry ink
within an application canvas of an application execut-
ing on an input device.

10. The system of claim 9, wherein rendering of the input
further comprises processing the received input as wet ink
strokes and storing the wet ink strokes to an input layer.

11. The system of claim 10, wherein buffering of the wet
ink further comprises transferring the wet ink strokes to a
transfer layer buffer and generating semi-dry ink strokes
based on the re-rendering.

12. The system of claim 11, wherein the re-rendering fur-
ther comprises:

removing a first wet ink stroke from the input layer,

rendering remaining wet ink strokes to generate the semi-

dry ink strokes, and

10

15

20

25

30

35

40

14

storing the rendered semi-dry ink strokes in the transfer

layer buffer.

13. The system of claim 12, wherein buffering further
comprises locking the transfer layer buffer, and transmitting
the semi-dry ink strokes to an application for commitment of
the semi-dry ink strokes.

14. The system of claim 13, wherein buffering further
comprises unlocking the transfer layer buffer in response to
transmitting the semi-dry ink strokes to the application.

15. The system of claim 14, wherein buffering further
comprises deleting the semi-dry ink strokes from the transfer
layer buffer in response to transmitting the semi-dry ink
strokes to the application.

16. The system of claim 12, wherein the processor is con-
figured to re-render the semi-dry ink for commitment to the
application.

17. The system of claim 9, wherein the system is an input
device that receives input from one or more selected from a
group consisting of: a digital pen, a touch screen, a digitizer,
a mouse, and an object-tracking electronic sensor.

18. A system comprising:

at least one processor; and

a memory operatively connected with the at least one pro-

cessor, wherein the memory stores computer executable

instructions which, when executed by the at least one

processor, cause the at least one processor to perform a

method that comprises:

storing, in a first buffer, wet ink rendered from process-
ing of a received input;

buffering, using a second buffer, the wet ink to generate
semi-dry ink by re-rendering one or more portions of
the wet ink;

storing the semi-dry ink in the second buffer; and

simultaneously presenting the wet ink and the semi-dry
ink within an application canvas of an application.

19. The system of claim 18, wherein the method executed
by the at least one processor further comprises:

locking the second buffer;

transmitting the semi-dry ink to the application canvas;

deleting the contents of the second buffer; and

unlocking the second buffer.

20. The system of claim 18, wherein the method executed
by the at least one processor further comprises:

executing a first thread to render the wet ink using the first

buffer;

executing a second thread to generate the semi-dry ink; and

executing a third thread to commit the buffered wet ink and

the buffered semi-dry ink to the application canvas.

#* #* #* #* #*

